
MolSpin User Manual

August 2019
Claus Nielsen

University of Southern Denmark

1

Table of Contents
1 Installation 4

1.1 Linux . 4
1.2 Windows . 4
1.3 Testing your MolSpin installation . 4

2 Getting Started 5
2.1 Input file basics . 5

2.1.1 Overall structure: Objects and Object Groups . 5
2.1.2 Comments . 6
2.1.3 Case sensitivity and strings . 6
2.1.4 Input file example . 6

2.2 Running MolSpin . 10
2.2.1 Commandline parameters . 10

3 Specifying the spin system 12
3.1 Spins . 12
3.2 Interactions . 13
3.3 Transitions . 13
3.4 Operators . 14
3.5 States . 15
3.6 Properties . 16
3.7 Specifying Tensors . 16
3.8 Specifying Trajectories . 18

3.8.1 Interaction trajectories . 18
3.8.2 Tensor trajectories . 19
3.8.3 Transition trajectories . 19
3.8.4 Spin trajectories . 19

3.9 ActionTargets: ActionVectors and ActionScalars . 20

4 Specifying the settings object group 21
4.1 The Settings object . 21
4.2 Actions . 21
4.3 Output requests . 22

5 The Run section and task classes 24
5.1 Overview of task classes . 24
5.2 General parameters . 24
5.3 Task class: DynamicHS-TimeEvolution . 25
5.4 Task class: PeriodicHS-TimeEvolution . 26
5.5 Task class: MultiDynamicHS-TimeEvolution . 28
5.6 Task class: StaticSS-TimeEvolution . 28
5.7 Task class: PeriodicSS-TimeEvolution . 29
5.8 Task class: MultiStaticSS-TimeEvolution . 30
5.9 Task class: StaticSS . 31
5.10 Task class: StaticHS-SymmetricDecay . 32
5.11 Task class: RP-SymmetricUncoupled . 33
5.12 Task class: Gamma-Compute . 34
5.13 Task class: HamiltonianEigenvalues . 34

2

6 Preprocessor directives 36
6.1 #include <filename> . 36
6.2 #define <name> <value (optional)> . 36
6.3 #undef <name> . 36
6.4 #ifdef <name> . 36
6.5 #ifndef <name> . 36
6.6 #else . 37
6.7 #endif . 37

3

1 Installation

1.1 Linux
This software package relies on the Armadillo C++ Linear Algebra Library, which needs to be installed
on the system prior to compilation of the MolSpin application. Furthermore, it is suggested that
OpenBLAS and LAPACK are also installed on the system, and you should make sure that they are
recognized by Armadillo when installing that package (when you install Armadillo it will tell you
whether it has detected those packages).

You can use other high-speed math libraries like Intel MKL instead of OpenBLAS, but you may
need to modify the makefile in that case. Note also if you are not using OpenBLAS that you need to
change main.cpp: import and usage of the function “openblas_set_num_threads” should be removed
(it is just 2 lines that should be removed).

To compile the MolSpin application, navigate to the folder containing makefile and main.cpp in a
terminal, and type make. If everything works, you will then have the executable file called “molspin”
in the folder. If it does not work, you may need to change the makefile or configure your Armadillo
installation.

Note that MolSpin was developed using the GCC 5.4.0 compiler and requires a C++14-compatible
compiler. The Armadillo version should be 8.5 or newer.

Note also that installation (or rather compilation) of MolSpin does not generate any files outside
the MolSpin folder containing the source code.

1.2 Windows
In Windows it would be easiest to use the Windows Subsystem for Linux (WSL) or Cygwin for
compiling and running MolSpin. I have not tried compiling MolSpin on Windows outside WSL/Cygwin.

1.3 Testing your MolSpin installation
Once MolSpin is installed, you should check that everything works by running make test.

4

2 Getting Started

2.1 Input file basics
To run MolSpin you must first prepare an input file which describes the spin system(s) you want to
investigate, settings for your calculations, and the type of calculations you want to perform. In order to
make this as easy an intuitive as possible, MolSpin uses a very elaborate format for input files, which
in some ways look similar to the C programming language - but of course much simpler. Employing
such an elaborate input format has the effect that input files may become rather large, and therefore
you should know that it is possible to split the input into multiple files using the #include preprocessor
directive described in section 6.11.

The following subsections walk you through the main elements of the input file formats.

2.1.1 Overall structure: Objects and Object Groups

All input in MolSpin is organized in objects, and each object must belong to an object group. The
same syntax is used for defining objects and object groups: first a keyword and a name is specified,
separated by a space, and then the contents of the object or object group is contained between { and
}. The keyword denotes the type of object or object group, and the name is used to refer to it from
other parts of the input file, or from the output or error messages from MolSpin. Here is an example
where a SpinSystem object group is created, containing a Spin object.

1 SpinSystem MySystem
2 {
3 Spin SomeParticle
4 {
5 spin = 1/2;
6 type = electron;
7 }
8 }

Indentation (spaces and tabs) and line breaks are ignored by MolSpin, so the same definitions could
be written as:

1 SpinSystem MySystem{Spin SomeParticle{spin=1/2;type=electron;}}

Although this way of writing the input is valid, it is not very easy to see what is going on, so it is
recommended to format your input files like the first example above!

There are only three types of object groups: SpinSystem, Settings and Run, and note that the
Run group, which is also referred to as the run section is special since it cannot be assigned a name2.
There is no limit to the number of objects that can be assigned to an object group, and it is possible
to split an object group between multiple files by simply creating object groups of the same type (e.g.
SpinSystem) using the same name.

Different object groups contain different types of objects: SpinSystem groups contain objects of the
types Spin, Interaction, Transition, State and a single Properties object. Settings groups contains a
Settings object and any number of Action and Output objects, and the Run section contains the Task
objects that describe what kinds of calculations to perform. Sections 3, 4 and 5 describes all the details
about how these objects work, and you should be aware that Action objects are crucial for defining
the behaviour of multi-step calculations, and is the main source of the great flexibility that MolSpin
offers.

1Note also that you can use #define directive to affect parameters defined in included files.
2All objects and both of the other object groups must be given a name; the run section is the only exception.

5

2.1.2 Comments

The MolSpin input format uses the same conventions for comments as in the C programming language:
two slashes (//) are used for single-line comments, such that the rest of the line after // is considered
a comment, and /* */ for multi-line or in-line comments. Here is example:

1 This is not a comment // But this IS a comment!
2 Not a comment /* this is a comment */ Not a comment again!
3 /*
4 Here is a comment
5 that span multiple lines!
6 */

2.1.3 Case sensitivity and strings

The input format is not case senstive for normal input, but there is one notable exception: strings
are case sensitive.

Strings are defined between quotation marks, and have the special property that they preserve
spaces. Thus whenever you need to use capital letters, e.g. in a file name, or when you need to preserve
spaces, e.g. when defining a vector or matrix, you need to use strings. Here is an example where the
magnetic field vector of the Zeeman interaction is defined using a string:

1 Interaction Zeeman
2 {
3 type = Zeeman;
4 field = "0 0 1e-5";
5 spins = electron1, electron2;
6 }

One should in general be very careful when using strings due to the case sensitivity they imply.
Especially when writing names; the names of objects or object groups can become case sensitive by
using a string:

1 Interaction "Zeeman" // The name is now case sensitive - only strings can refer to it!
2 { /* contents... */ }

2.1.4 Input file example

As an example we will setup a calculation of the singlet yield of a radical pair for different external
magnetic fields. Let us first create a SpinSystem with the two unpaired electronic spins of the radical
pair:

1 SpinSystem RPSystem
2 {
3 Spin electron1
4 {
5 spin = 1/2;
6 type = electron;
7 tensor = isotropic(2);
8 }
9

10 Spin electron2
11 {
12 spin = 1/2;

6

13 type = electron;
14 tensor = isotropic(2);
15 }
16

17 // Other objects will be added here
18 }

This defines two spin-1/2 particles and sets the Landé g-factor to 2 (i.e. the isotropic g-tensors). Let
us assume that each radical has a single magnetic nucleus, so we add two more spins to the SpinSystem:

1 Spin nucleus1
2 {
3 spin = 1/2; // This is a spin-1/2 like a proton
4 type = nucleus;
5 tensor = isotropic("1.0");
6 }
7

8 Spin nucleus2
9 {

10 spin = 1; // This is a spin-1 nucleus like nitrogen
11 type = nucleus;
12 tensor = anisotropic("0.5 0.5 0");
13 }

We will use the tensors of the nuclei as hyperfine tensors, and we want the specified tensors to be
in mT units. Since the units by default are T, we can set the “prefactor” parameter of the hyperfine
interaction objects to 10−3. Thus the hyperfine interaction objects are:

1 Interaction Hyperfine1
2 {
3 type = Hyperfine;
4 group1 = electron1;
5 group2 = nucleus1;
6 prefactor = 1e-3;
7 }
8

9 Interaction Hyperfine2
10 {
11 type = Hyperfine;
12 group1 = electron2;
13 group2 = nucleus2;
14 prefactor = 1e-3;
15 }

Next we will add the external magnetic field as a Zeeman interaction, but only with the electrons;
the interaction between the magnetic field and the nuclei is so small that it will be neglected here3:

1 Interaction Zeeman
2 {
3 type = Zeeman;
4 field = "0 0 5e-5";
5 spins = electron1, electron2;
6 }

3The difference is in the gyromagnetic ratio of the nuclei. If you want to add a Zeeman interaction with the nuclei
you should do it as a separate Interaction object with “CommonPrefactor” set to false and by setting the prefactor of
the Interaction object to the gyromagnetic ratio.

7

Next, the reaction processes and initial state of the radical pair should be specified, but in order to
this you first need to define some State objects (also within the SpinSystem). In these calculations we
are only concerned with the spin state of the two unpaired electrons, so we can just ignore the nuclear
spins when defining the State objects. We will define a set of states that makes up a complete basis of
the Hilbert space spanned by the two electronic spins:

|S〉 =
1√
2

(|αβ〉 − |βα〉), |T+〉 = |αα〉,

|T0〉 =
1√
2

(|αβ〉+ |βα〉), |T−〉 = |ββ〉,

where α and β are the two spin states of an electronic spin. In MolSpin these states are defined as:

1 State Singlet
2 {
3 spins(electron1,electron2) = |1/2,-1/2> - |-1/2,1/2>;
4 }
5

6 State T0
7 {
8 spins(electron1,electron2) = |1/2,-1/2> + |-1/2,1/2>;
9 }

10

11 State Tp
12 {
13 spin(electron1) = |1/2>;
14 spin(electron2) = |1/2>;
15 }
16

17 State Tm
18 {
19 spin(electron1) = |-1/2>;
20 spin(electron2) = |-1/2>;
21 }
22

23 State Identity
24 {
25 }

The normalization constants of 1√
2
are not necessary as MolSpin will normalize the states for you.

Note that we have defined an additional state object without any contents, the Identity state, which
will serve a special purpose: now that we are ready to define a decay process for the radical pair,
the Identity state - which does not specify any particular state for any spin - can be used to specify
spin-independent processes. Let us therefore just define a single, spin-independent decay process with
a rate constant of 1 µs−1:

1 Transition spinindependent_decay
2 {
3 rate = 1e-3; // The rate constant
4 source = Identity; // Specify the state here
5 }

Note that if you wanted to have triplet decay from your radical pair, you would need to create three
Transition objects: one for each of the states |T0〉, |T+〉 and |T−〉 defined above; it is not possible to
define a single generic triplet state. Now we only need to specify the initial state, which is done using
a special Properties object:

8

1 Properties properties
2 {
3 initialstate = Singlet;
4 }

Currently no other properties can be specified for a spin system. If you instead want your system
to be spawned not in a particular state like |T0〉, |T+〉 or |T−〉, but a mixed ensemble containing an
equal amount of all three of these, you can specify a comma-separated list of states to be represented
initially:

1 Properties properties
2 {
3 initialstate = T0, Tp, Tm; // Mixed triplet ensemble
4 }

Note that some calculation methods may not describe ensembles, but the evolution of a specific state,
in which case the above initial state specification will create a linear combination of |T0〉, |T+〉 or
|T−〉 as the initial state (i.e. just a single state!). No such calculation methods are implemented at the
moment, but it may be the case for some custom methods created by other users.

That completes our description of the SpinSystem - the physical system is now described! Next we
will create the so-called Run section of the input file which is just a collection of Tasks, i.e. the actual
calculations to be carried out. We only want to perform a simple quantum yield calculation, so we will
use the following Run section:

1 Run
2 {
3 Task CalculateQuantumYield
4 {
5 type = RP-SymmetricUncoupled;
6 logfile = "logfile.txt"; // The log will be written to this file
7 datafile = "result.dat"; // Data will be written to this file
8 }
9 }

The Run section is not assigned a name, and we define a single task of the type RP-SymmetricUncoupled
which is a very special task type that can only be used under special circumstances - but which is
very fast. It is recommended to read more about the main task types: StaticSS, DynamicHS-
TimeEvolution, StaticHS-SymmetricDecay, and RP-SymmetricUncoupled. All of these can
calculate quantum yields, while StaticSS-TimeEvolution and DynamicHS-TimeEvolution are
the main task types for calculating the time evolution of a spin system. If you have any time-dependent
interactions you should normally go with DynamicHS-TimeEvolution, but this task type is very slow.

Now we just need to specify the settings for the calculation, in particular we need to specify Actions,
Outputs and a Settings object, and these are specified in the Settings object group:

1 Settings
2 {
3 Settings general
4 {
5 steps = 500;
6 }
7

8 Action scan
9 {

9

10 value = 0.001;
11 direction = "0 0 1";
12 type = addvector;
13 vector = RPSystem.Zeeman.field;
14 }
15

16 Output fieldstrength
17 {
18 type = length;
19 vector = RPSystem.Zeeman.field;
20 }
21 }

We specify that we want to perform 500 steps, that is run all the tasks in the run section 500 times.
Since we do not just want to repeat the exact same calculation 500 times, we also define an Action,
which adds a vector along the z-axis with a length of 1 mT to the external magnetic field between
every step (i.e. the action is executed every time all of the tasks in the Run section has finished).
Finally we also create an Output object, telling MolSpin that we would like to see the current field
strength every time results are written. Note that use of such Output objects are not mandatory for
the task classes, so not every task type may make use of it - but most task types will.

You are now ready to run MolSpin using your input file:

1 molspin my_input.msd

The .msd file extension is recommended for MolSpin input files. You can read more about running
MolSpin in the next section.

2.2 Running MolSpin
MolSpin is run from the commandline using the following syntax:

1 <path to molspin executable> <parameters> <path to input file>

If the folder containing the MolSpin executable file is in your PATH environment variable you can
simply write:

1 molspin <parameters> <path to input file>

If your input file is called “my_input.msd” (the .msd extension is recommended for MolSpin input
files, but not required), then you would write:

1 molspin <parameters> my_input.msd

This assumes that you are currently in the folder containing the input file – otherwise you would need
to specify the path to the file. Note also that you can specify some commandline parameters, and that
these must be given before the input file.

2.2.1 Commandline parameters

The available commandline parameters are listed below:

10

Parameter Example Description
-a
--append

molspin -a myfile.msd File output is appended to existing files (instead
of overwriting).

-c
--checkpoint

molspin -c mytask myfile.msd Skip all tasks in the runsection until the specified
checkpoint is found. This only happens for the
first step.

-d
--defines

molspin -d myfile.msd
molspin -d def 5 myfile.msd

Show all defined directives and their values, and
included files. Can also be used to create defines
on the commandline by specifying name and va-
lue to define (beware of case sensitivity).

-h
--help

molspin -h Shows help message if no input file is specified.

-n
--steps

molspin -n 5 myfile.msd Specify how many steps should be calculated be-
fore you are notified.

-o
--objects

molspin -o myfile.msd Show the objects that were read from the input
files.

-os
--objects-states

molspin -os myfile.msd Similar to --objects, but with extra State object
information.

-p
--threads

molspin -p 24 myfile.msd Specify the number of threads/processor cores to
use. Works only if you are using OpenBLAS.

-r
--first-step

molspin -r 5 myfile.msd Specify which step to start from (if you don’t
want to start from step 0).

-l
--step-limit

molspin -l 5 myfile.msd Limits the number of steps to run.

-s
--silent

molspin -s myfile.msd Minimize the text output.

-t
--action-targets

molspin -t myfile.msd Prints all the ActionTargets that can be used.

-z
--no-calc

molspin -z myfile.msd Skip calculations.

Note that you can restart a stopped calculation using:

1 molspin -r <step number> -c <task name> -a myfile.msd

Here you can specify the last unfinished step number, and the task name of the first unfinished task
that appears in the run section. If all tasks were completed for the last step number that was run (or
if you have only a single task in the run section), and you merely wish to extend the calculation with
more steps, you can omit the checkpoint specification. Make sure that you are using the append-option
though, as you will otherwise overwrite the existing files!

11

3 Specifying the spin system
A SpinSystem defines a physical system. It is an object group that contains Spins, Interactions, Tran-
sitions, States and a Properties object, and it is possible to divide a SpinSystem definition between
multiple files using the #include directive. SpinSystems are defined as follows:

1 SpinSystem my_system
2 {
3 // Define objects (Spins, Interactions, etc.) here...
4 }

It is possible to define multiple spin systems, but note that not all task types supports interactions
between spin systems.

3.1 Spins
Spins are defined by the keyword spin followed by a name:

1 Spin Nitrogen_nucleus
2 {
3 spin = 1; // 14N is a spin-1 particle
4 tensor = isotropic(1) + anisotropic("0 0 -2.0");
5 type = nucleus;
6 }
7 Spin electron
8 {
9 spin = 1/2;

10 tensor = isotropic(2); // The anomalous magnetic moment of the electron (without QED)
11 type = electron;
12 }

The following parameters can be defined for a spin:

Parameter Values Default Description
Spin <half-integer> 1/2 The spin quantum number in units of ~.
Tensor <tensor> isotropic(2) The g-tensor.
Type electron,

nucleus,
unspecified

unspecified What type of spin is it (i.e. electron, atomic
nucleus or something else?).

QuantizationAxis1 <vector> “1 0 0” First spin quantization axis.
QuantizationAxis2 <vector> “0 1 0” Second spin quantization axis.
QuantizationAxis3 <vector> “0 0 1” Third spin quantization axis.

Note that the spin quantum number is given as a “half-integer”: You must specify either an integer or
an integer with the suffix “/2”. The allowed values of the spin quantum number are therefore: 1/2, 1,
3/2, 2, 5/2, 3, and so on. Note that you can also write e.g. 2/2 instead of 1, but decimal numbers such
as 0.5 are not allowed.

The spin quantization axes determine the spin operators in the lab frame, i.e. S′x = a1Sx + a2Sy +
a3Sz where a1, a2 and a3 are the components of the first quantization axis. Note that the lab frame
spin operators are, furthermore, affected by the tensor as well, and in principle the quantization axis
specification is redundant as the same results could be obtained using a rotation matrix for the tensor -
but sometimes it is just easier to set the quantization axes than calculating the needed transformation
matrix.

12

3.2 Interactions
All interactions come in one of the following two forms:

HSS(i) = µB αgiSi ·A · F, HDS(i, j) = µB αgiSi ·A · gjSj , (1)

where i and j are indices referring to two spins. µB the Bohr magneton, Sk are spin operators, and gk

are the tensors specified in the spin objects. A, F and α is a tensor, a vector and a constant factor,
respectively, specified for the Interaction object. The Hamiltonian HSS involves only a single spin (this
could be the Zeeman interaction where F would be a magnetic field), while HDS will be referred to as
the double-spin Hamiltonian (e.g. hyperfine or exchange interaction).

The following parameters can be specified for an Interaction:

Parameter Values Default Description
Type singlespin,

doublespin
- One of the two types of interaction in Eq. (1). Must

always be specified.
Tensor <tensor> isotropic(1) The tensor A used in Eq. (1).
Field <vector> zero-

vector
The vector F used in Eq. (1). Note: Only used in single-
spin interactions!

Prefactor <float> 1.0 Optional prefactor for the interaction object. α in Eq.
(1).

CommonPrefactor <bool> true If set to false, the Bohr magneton µB will not be inclu-
ded in Eq. (1) for the interaction object.

IgnoreTensors <bool> false If set to true, the tensors of the spin objects gi and
gj will not be included in Eq. (1) for the interaction
object.

FieldType
TimeDependence

LinearPolarization,
CircularPolarization,
Static

Static Allows the Field vector of the interaction object to beco-
me time-dependent. Note: Not all task types support
time-dependent Hamiltonians!

Frequency <float> 1.0 Frequency of field oscillations. Requires a FieldType ot-
her than Static.

Phase <float> 0.0 Initial phase of field oscillations. Requires a FieldType
other than Static.

Axis <vector> "0 0 1" Axis that the field will rotate about. Requires FieldTy-
pe set to CircularPolarization.

Perpendicular-
Oscillations

<bool> false If set to true, the rotating field vector will be pro-
jected onto the plane perpendicular to the rotation axis.
Requires FieldType set to CircularPolarization.

Note that there are some synonyms for the Type parameter: you can write onespin or Zeeman instead
of singlespin, and you can use twospin, hyperfine, dipole or exchange instead of doublespin.

3.3 Transitions
A transition object describes a process that can change the total number of spin systems, i.e. it
represents a source or a sink. Transition objects are commonly used to model decay or recombination
reactions (sinks) or processes that replenishes the spin system. For transitions of the sink type it is also
possible to specify a target spin system together with a target state, meaning that the transition/process
transforms the spin system into another spin system - an example of such a process is an electron

13

transfer from a radical, that generates another radical (since both radicals are spin systems, but with
different molecular environment). Note that target spin systems are not taken into account by most
task types; see the individual task types for more information.

Transition objects have the following parameters:

Keyword Values Description
Type source,

sink
Determines whether the process is a sink (default) or a
source.

Source
State
SourceState

<State> The state in the SpinSystem which is diminished or aug-
mented.

Target
TargetSystem

<SpinSystem> The new SpinSystem that the transition leads to. Requi-
res specification of a target state, and transition type
must be sink.

TargetState <State> A state in the target SpinSystem.
ReactionOperators
ReactionOperatorType

Haberkorn,
Lindblad

Requests a specific type of reaction operator for this
transition (Haberkorn is default).

Rate <float> The rate constant for the transition in ns−1.
Lifetime <float> The inverse of the rate constant for the transition in ns.

Only used if rate is not specified (either directly or in a
trajectory).

Note that the reaction operator type is not taken into account by all task classes.

3.4 Operators
Operators are may be used for a variety of purposes by custom task classes, but their original intended
purpose is to describe relaxation operators. Operator objects are a recent addition to the SpinAPI,
and their uses in the implemented task classes is limited.

Operator objects have the following parameters:

Keyword Values Description
Type RelaxationLindblad

relaxationdephasing
unspecified

The type of operator.

Rate1 <float> A value that may be associated with the operator.
Rate2 <float> A value that may be associated with the operator.
Rate3 <float> A value that may be associated with the operator.
Rates <float> Sets all three rates to this value.
Spins
SpinList

<Spins> Spin objects that should be affected by the operator.

Note that the SpinAPI::SpinSpace class only supports the Operator type RelaxationLindblad, and

14

only for Liouville-space task classes such as StaticSS. The produced relaxation is defined by:

R(ρ) =
∑
i

[
kx

(
SixρSix −

1

2
(Sixρ+ ρSix)

)
+ ky

(
SiyρSiy −

1

2
(Siyρ+ ρSiy)

)
+ kz

(
SizρSiz −

1

2
(Sizρ+ ρSiz)

)]
,

where the sum is over all spins in the specified spinlist, and kx, ky and kz are the three rates.

3.5 States
State objects define the quantum state of a spin system, although they often describe only the quantum
state of a subsystem, for example the singlet state of a radical pair. There are only two types of input
in a State object:

Keyword Values Description
spin(<spin>) <state ket> Specify the the state of a single spin.
spins(<spinlist>) <state ket> Specify the the state of entangled spins.

The first keyword, spin, is used to specify the spin state of a single Spin object inside the spin system.
The spin state should be written as a state ket, i.e. |1/2> or |-1/2> for a spin-1/2 particle, or |+1>,
|0> or |-1> for a spin-1 particle. Note that the name of the Spin object is given between (and) as part
of the keyword, and you can thus set the state for each spin individually as in the following example:

1 // Define some spin objects
2 Spin s1 { spin = 1/2; }
3 Spin s2 { spin = 3/2; }
4

5 // Define a quantum state
6 State MyState
7 {
8 spin(s1) = |1/2>;
9 spin(s2) = |-3/2>;

10 }

You do not need to specify a state for every spin in the spin system. Whenever the state object is used
to generate a projection operator onto a quantum state (as is the case in almost all task classes), the
resulting state projection operator will be an identity operator in the subspace spanned by the spins
which have not been specified in the State object. As a special result of this, the projection operator
corresponding to an empty State object is just the Identity operator for the spin system, and using
such a State object as the source state in a Transition will lead to a spin-independent transition:

1 // Empty State object
2 State IdentityOperator { }

All task types that rely on a density operator formalism, for example, only use State objects to
create projection operators (the initial ensemble described by a density operator can be written as
ρ(0) =

∑
i Pi/Tr(

∑
i Pi) where Pi are projection operators). You need to be more careful with task

types that use state vectors (e.g. when solving the Schrödinger equation) since state vectors need to
represent a specific state - in such cases it is not possible to use a mixed ensemble of states. Such task
types are not currently implemented in MolSpin though.

15

Specifying the state of each spin individually is not always enough, since spins can be entangled.
Examples are the singlet and T0 states of a radical pair. Such entanglements can be specified using
the keyword spins by providing a comma-separated list of Spin object names between (and) as part
of the keyword. The value is again written as a state ket, where the magnetic quantum number of
each spin is given as a comma-sparated list. Also, in order to properly specify entanglements, a linear
combination of state kets can be specified:

1 // Define some spin objects
2 Spin s1 { spin = 1/2; }
3 Spin s2 { spin = 3/2; }
4 Spin s3 { spin = 1/2; }
5

6 // Define a quantum state
7 State MyEntangledState
8 {
9 spins(s1,s2) = 2|+1/2,-3/2> - 3i|+1/2,-1/2> + 0.1 |-1/2,3/2>;

10 spin(s3) = |1/2>;
11 }

Note that MolSpin does not expect the specified state to be normalized; it is the responsibility of the
task classes to normalize any state vectors or spin state ensembles.

3.6 Properties
A spin system can have a single Properties object which defines some general properties for the system.
The following properties are available:

Keyword Values Description
InitialState <State list> A comma-separated list of states describing the initial

state of the spin system.

If multiple initial states are specified, note that the exact meaning of having multiple initial states
depends on the used task types (especially if custom task types are used). All of the standard task
types described in this manual treats a spin system as an ensemble which initially contains an even
mixture of all the specified states, unless otherwise specified in the task class description.

3.7 Specifying Tensors
Tensor objects can be specified for Interaction and Spin objects, and play the role of hyperfine and
g-tensors. Since tensors are complex entities, a special syntax must be used to specify them, and this
syntax consists of a combination of the following keywords:

16

Keyword Values Description
Isotropic <float> The isotropic value of the tensor.
Anisotropic <vector> The three components of the anisotropic part.
Matrix <matrix> A full matrix representation of the tensor. The matrix is expected to

be symmetric.
axis1
axis2
axis3

<vector> The principal axes of the tensor.

ChangeBasis <matrix> A similarity transformation will be applied to the lab frame matrix
representation of the tensor, i.e. A′ = S†AS where A is the current
lab frame representation, A′ is the lab frame representation after the
transformation, and S is the transformation matrix specified by this
keyword.

Trajectory <filename> Load a trajectory for the tensor, and use it to set the tensor parame-
ters.

Every keyword is followed by parentheses containing the parameters, and multiple keywords are added
by a plus sign. For example:

1 tensor = isotropic("1.0") + anisotropic("1e-4 1e-4 1e-3") + trajectory("motions.mst");
2 tensor = matrix("1.0 0.0 0.0;0.0 1.0 0.0;0.0 0.0 1.0");

The trajectory in the first example could for example contain columns with time and the three principal
axes, e.g. describing rotational diffusion of a radical while assuming constant principal values (isotropic
and anisotropic values) of the tensor. Note that the matrix in the second example above is an identity
matrix, so the same definition could be made using isotropic("1.0") instead. The examples above also
demonstrate how vectors and matrices are defined: vectors consists of three numbers separated by
spaces, and must be written as strings4, and matrices are defined in a similar way, with semicolon
to separate rows in the matrix.

Important note on tensor definitions: The order in which components of a tensor are added
together matters! The keywords for a tensor are processed in the order in which they appear; in the
first example above, the isotropic part is first set, then the anisotropic part, and then finally a trajectory
is assigned. There is no conflict in any of these examples, but consider instead the following two cases
which yield very different results:

1 tensor = axis1("1 1 0") + axis2("1 -1 0") + matrix("1 0.1 -0.3;0.1 1 0.7;-0.3 0.7 -2");
2 tensor = matrix("1 0.1 -0.3;0.1 1 0.7;-0.3 0.7 -2") + axis1("1 1 0") + axis2("1 -1 0");

The matrix keyword diagonalizes the given matrix and sets the three principal axes to the ei-
genvectors of the matrix, regardless of what the axes were assigned to previously. Hence the first line
above is wrong : the axis specifications are overwritten by the matrix keyword! Note also that any
transformation performed by the changebasis keyword will be overwritten by the axis keywords. Thus
it is recommended that you use the axis keywords after the matrix keyword (as in the second line
above), and the changebasis keyword after the axis keywords.

4In order to preserve the spaces that would otherwise be ignored by the input file parser!

17

3.8 Specifying Trajectories
Trajectories is a special feature in MolSpin that allows you to specify complex time-dependences of
parameters. For some task types they may also be used to provide sets of parameters, without specifying
any time - such uncommon uses will be mentioned explitcly in the documentation for the individual
task types. A trajectories are specified in separate files which contain only a trajectory, and it is
recommended to use the .mst file extension to easily identify trajectory files (MolSpin Trajectory).

A trajectory file can be perceived as a table consisting of some rows and columns. The first line of
the trajectory file defines the column headers, and each following line defines a row with data. Each
column is separated by one or more space or tab characters; this holds for both the header row and
all the data rows.

Below is an example of a trajectory file for an Interaction object:

1 time prefactor field.x field.y field.z
2 100 1 0 0 5e-4
3 300 1 5e-4 0 0
4 400 1 0 5e-4 0
5 600 5 0 0 5e-4
6 800 0.1 0 0 0.001

The time column has a special meaning and is required for task types that includes time-dependent
parameters: when the parameters in the trajectory are requested at a specific time (here the prefactor
and field of an Interaction object), the first entry in the trajectory is used for all times smaller than the
first specified time. When the requested time is larger than any entries in the trajectory it is instead
the final entry in the trajectory that is used. For all requested times between that of the first and
the final entry in the trajectory, the first entry with a time larger than the requested time is found,
and a linear interpolation between this and the previous row in the trajectory is used for all the
parameters. It is currently not possible to change the interpolation type, but since there is no limit on
the number of rows in the trajectory you still have fine-grained control5. Note that MolSpin expects
the rows to be ordered by time.

3.8.1 Interaction trajectories

Interaction objects recognize the following column headers:

time, prefactor, field.x, field.y, field.z.

Note that if any of the field components (field.x/y/z) are used, it is required that the remaining
components are specified as well. Otherwise the specified field components are ignored (i.e. you must
either specify both field.x, field.y and field.z, or none of the three).

Trajectories for the tensor of an interaction is specified separately by adding the trajectory keyword
to the tensor specification, and can be a separate file. You can use the same trajectory file for both
the Interaction object and its tensor since Interaction and Tensor objects use different column header
names (except time) and each object type will just ignore the columns that it does not use. Note that
this approach still means that the trajectory file will be loaded into memory twice, and that there
is a certain memory overhead (waste) with this approach - for very long trajectories it is therefore
recommended to split the Interaction trajectory (prefactor and field.x/y/z) and its Tensor trajectory
into two separate files.

5Memory limitations still apply; every trajectory is stored in the memory while MolSpin is running.

18

3.8.2 Tensor trajectories

Tensor objects recognize the following column headers:

time, isotropic, anisotropic.x, anisotropic.y, anisotropic.z, axis1.x, axis1.y, axis1.z,
axis2.x, axis2.y, axis2.z, axis3.x, axis3.y, axis3.z

Note that if one component of a vector is specified, all components of the same vector must be specified
(as with the field.x/y/z for Interaction objects). Thus if you want to specify the anisotropic part you
must specify both anisotropic.x, anisotropic.y and anisotropic.z. Similar with e.g. axis2.x/y/z. But you
do not need to specify all axes if you specify one of them; you can for example specify axis1 and axis3
without specifying axis2, as long as you just include both the x, y and z components of both axis1 and
axis3.

Here is an example of a tensor trajectory:

1 time isotropic anisotropic.x anisotropic.y anisotropic.z
2 100 0 0.0 0.0 0.0
3 200 2 0.2 0.2 0.0
4 400 1 0.0 1.2 0.0
5 500 0 0.8 0.0 0.0
6 800 1 0.0 0.0 2.0

3.8.3 Transition trajectories

Transition objects can have trajectory that specifies the time-evolution of the rate constant, or alter-
natively the time-evolution can be specified for the lifetime instead of the rate constant (the lifetime
is the inverse of the rate constant).

Here is an example of a Transition trajectory:

1 time rate lifetime
2 100 1e-2 100
3 200 1e-4 10000
4 400 0.0 1e+10
5 500 1e-3 1000
6 600 2e-3 500

Note: You should specify either a rate column or a lifetime column, since only one of them can be
used (the lifetime also provides a rate). If both columns are present as in the example above, only the
column with the “rate” header will be used.

3.8.4 Spin trajectories

For Spin objects their tensors can be assigned a trajectory, but the Spin object itself may also be
assigned a trajectory with the spin quantization axes.

time, axis1.x, axis1.y, axis1.z, axis2.x, axis2.y, axis2.z, axis3.x, axis3.y, axis3.z

Note that the same trajectory file can be assigned to Spin objects and their tensor, since the Spin
object will just ignore the additional data columns used by the tensor.

19

3.9 ActionTargets: ActionVectors and ActionScalars
Many parameters can be changed between the executing of calculation steps using Actions (see section
4.2), which provides a great deal of flexibility. These parameters that can be affected by Actions are
collectively known as ActionTargets, and may be divided into ActionVectors and ActionScalars. An
example of an ActionVector is the field vector of a singlespin Interaction, whereas the rate constant for
a Transition object, for example, is an ActionScalar. In addition to their use in Actions, ActionTargets
can also be used by Output objects (see section 4.3).

The name of an ActionTarget will be of the form “<SpinSystem name>.<object name>.<parameter>”,
and you can use the “-t” commandline option to see a list of available ActionTargets for the spin sy-
stem(s) you have defined:

1 molspin -t -z myfile.msd

Here the “-z” option is also used to prevent running any calculations, assuming you only wanted to see
a list of ActionTargets.

Note: Make sure that all your objects within a spin system have unique names, and that your spin
systems have unique names, such that each ActionTarget can be uniquely identified.

20

4 Specifying the settings object group
The Settings object group allows you to define Actions and Output requests, as well as some general
options for your calculations.

4.1 The Settings object
The Settings object should contain a Settings object, which is used to specify general options for the
calculations. The following settings are available:

Keyword Values Description
Steps <integer> The number of calculation steps to perform, i.e. number of times

the Run section is being executed. Default: 1.
Time <float> Sets the time for any time-dependent interactions or trajectories.

Only useful for task classes that do not support time-dependent in-
teractions (in order to “freeze” time-dependent interactions at spe-
cific values for the calculations). Default: 0.

TrajectoryStep <integer> Sets the trajectory step for any parameter with a trajectory. For tra-
jectories including a time column this is only useful for task classes
that do not support time-dependent interactions. Default: 0.

TrajectoryStep-
BeforeTime

<bool> If true, the trajectory step will be set before the time, which me-
ans that trajectories with a time column will use time instead of
trajectory step. Default: true, except when TrajectoryStep and not
Time is specified.

Notifications quiet
sparse
normal
details

Specifies the notification level. Default: Normal.

IgnoreWarnings
Nowarn

<bool> Ignore warnings. Default: False.

IgnoreErrors
Noerr

<bool> Ignore error messages. Default: False.

Note that TrajectoryStepBeforeTime should be written without “-”. Note also that some task classes
do not distinguish between notification levels for log output.

4.2 Actions
The use of actions is a central feature of the MolSpin application, as they provide a very general
framework for setting up calculations. When you set up your SpinSystems you are able to perform a
single calculation, but if you want to see the effect of changing a parameter on e.g. the quantum yields,
multiple calculations are needed. Hence you can specify the number of calculations you want to be
performed as the steps parameter in the settings object. But without Actions, all of those calculations
will be identical – it is the role of an Action to change the parameters between these individual
calculations.

The following types of actions are available, with the Action-specific parameters shown together
with each Action Type:

21

Action Type Parameter Description
RotateVector Rotates an ActionVector about a specified axis. Rotation ang-

le is given as the action value in degrees.
Vector
ActionVector

The ActionVector to act on.

Axis A vector specifying the axis to rotate the ActionVector about.
ScaleVector Scales an ActionVector by multiplication of the action value.

Vector
ActionVector

The ActionVector to act on.

AddVector Adds a constant vector to the ActionVector.
Vector
ActionVector

The ActionVector to act on.

Direction A vector specifying the direction of the vector to be added to
the ActionVector. The length of the vector is set to the action
value.

MultiplyScalar
ScaleScalar

Multiplies an ActionScalar by the constant action value.

Scalar
ActionScalar

The ActionScalar to act on.

AddScalar Adds the constant action value to an ActionScalar.
Scalar
ActionScalar

The ActionScalar to act on.

In addition to the Action-type-specific parameters, the following list of parameters are available for
all Actions:

Parameter Values Description
Type <type> A type of Action object from the table above.
Value <float> This is the “action value” refered to by the specific actions,

and its function depends on the action type (see the action
type table above).

Period <integer> Specifies how frequently the action should be performed. A
period of 1 (default) means that the action will be performed
after every step, a period of 5 means it will be performed after
every 5th step.

First <integer> The first step at which the action should be performed (de-
fault 1). After this step, the action will be performed with a
frequency specified by the action period.

Last <integer> The last step at which the action may be performed. After
reaching this step, the action will not be performed anymore.

4.3 Output requests
In addition to the standard output from the various task classes, such as quantum yields, you can
request additional output using Output objects. Note that Output objects only requests output, but it

22

is up to the individual task classes to decide whether when and where this requested output is printed,
and task classes may choose to ignore it (but this is not the case for any of the currently implemented
task classes).

Output requests are used to obtain information about ActionTargets: either by printing the actual
ActionScalar value or ActionVector components, or by requesting information such as the length of an
ActionVector. All the possible Output request types are listed in the table below:

Output Type Parameter Description
Angle
VectorAngle

Outputs the angle (degrees) between two vectors.

Vector A pointer to the ActionVector used to calculate the angle.
Reference A constant vector used to calculate the angle.

Length
VectorLength

Outputs the lengths of a vector.

Vector A pointer to the ActionVector whose length should be calcu-
lated.

Components
XYZ
Vector
VectorXYZ

Outputs the Cartesian components of a vector.

Vector A pointer to the ActionVector whose components to write to
the output file.

Dot
VectorDot
Projection

Calculates the projection (dot product) of the vector onto a
reference vector.

Vector A pointer to the ActionVector used to calculate the projection.
Reference A constant vector the ActionVector is projected onto.

Scalar Outputs a scalar
Scalar A pointer to the ActionScalar to write to the output file.

In addition, Output objects have the following properties that can be specified:

Keyword Values Description
Type <type> A type of output object from the table above.
Prefactor <float> Any value will be multiplied by this number before being printed.

23

5 The Run section and task classes
The Run section defines what happens at every calculation step: each task specified in the Run section
are executed sequentially within a calculation step, and this execution is repeated for the number of
calculation steps defined in a Settings objects (i.e. in the Settings object group, not the Run section
which only defines what happens every step). The tasks in the Run section are executed in the order
that they appear in the input file.

5.1 Overview of task classes
There is a wide variety of task classes available, as summarized in the table below. In general their names
refer to Hilbert Space (HS) or Superoperator Space (SS) methods, where superoperator space (Liouville
space) methods in general requires much more memory (i.e. scales much worse with number of spins).
The prefixes Static, Dynamic and Periodic tells whether time-dependent interactions are supported.
Note that some methods are specialized to specific spin systems; the RP-SymmetricUncoupled method
is designed for radical pairs only.

Task class Type TD RT MS Memory Speed
DynamicHS-TimeEvolution TE/QY Yes All No Medium Very slow
PeriodicHS-TimeEvolution TE/QY Per. All No Medium Slow
MultiDynamicHS-TimeEvolution TE Yes All Yes Medium Very slow
StaticSS-TimeEvolution TE No All No High Medium
PeriodicSS-TimeEvolution TE Per. All No High Medium
MultiStaticSS-TimeEvolution TE No All Yes High Medium
StaticSS QY No All No High Medium
StaticHS-SymmetricDecay QY No Indep. No Medium Fast
RP-SymmetricUncoupled QY No Indep. No Low Very fast
Gamma-Compute QY Per. Indep. No Medium Fast
Eigenvalues EL/RES Yes – No Medium Fast

Type: Describes what can be calculated, which is either the time-evolution (TE), quantum yields
(QY), energy levels (EL) or resonance frequencies (RES). TD: Whether time-dependences are taken
into account, where Per. means only periodic time-dependences. RT: Supported reaction types, where
Indep. means that only a spin-independent reaction is supported. MS: Supports use of multiple spin
systems. Most task types without multi-system support can still handle each spin system individually,
but ignores transitions between spin systems.Memory and speed: The memory and calculation time
requirements of a task class, which for most task types scales exponentially with system size.

5.2 General parameters
There are a few parameters that are available to all task classes; these are shown in the table below.

24

Parameter Values Description
Logfile
Log
Output

<filename> Location of logfile. If no logfile is specified, log output will be
written to stdout.

Datafile
Data

<filename> Location of main data file. If no data file is specified, main
data output will be written to stdout.

AppendLog <bool> If set to true, log output will be appended to the specified
logfile instead of overwriting an existing file. Not enabled by
default.

AppendData <bool> If set to true, data output will be appended to the speci-
fied main data file instead of overwriting an existing file. Not
enabled by default.

Append <bool> Setting this option overrules both AppendLog and Append-
Data. Note that the command-line append option also over-
rules this option.

Notifications quiet
sparse
normal
details

Specifies the notification level. Default: Normal.

IgnoreWarnings
Nowarn

<bool> Ignore warnings. Default: False.

IgnoreErrors
Noerr

<bool> Ignore error messages. Default: False.

5.3 Task class: DynamicHS-TimeEvolution
Brief description

Brute-force numerical integration to obtain the time-evolution of the spin system ensemble. Can per-
form time integration of these results in order to output quantum yields instead.

Limitations, approximations and comments

• This is the most general method to compute time-evolution or quantum yields for a single Spin-
System; it can handle all types of input.

• MultiDynamicHS-TimeEvolution is the equivalent method to use when you need multiple Spin-
Systems.

• Make sure to use a small enough timestep to avoid significant numerical errors.

• When calculating quantum yields, make sure the totaltime parameter is long enough to let the
SpinSystem decay completely.

• This is a very slow method; use it only when faster methods do not suffice.

Parameters

25

Parameter Values Default Description
TimeStep <float> 0.01 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
CalculateYields <bool> false Whether to output time-evolution (false) or quantum

yields (true).
TransitionYields <bool> false Whether to calculate quantum yields per transition

(true) or per State defined in the SpinSystem (false).
Quantum yield calculations only.

OutputStride <integer> 1 How often output should be written (time-evolution
output only), i.e. write output every nth numerical in-
tegration timestep, where the parameter n is specified
here.

Technical details

Solves the Liouville-von Neumann equation for the density operator ρ:

dρ

dt
= − i

~
[H, ρ] +K(ρ), (2)

where H is the (time-dependent) Hamiltonian, and K is the superoperator representing reactions
(either Haberkorn or Lindblad form).

The time-evolution output is the expectation value of state projection operators:

pi(t) = Tr(Piρ(t)), (3)

where Pi is the expectation value of state i. This is calculated for each State object defined in the
SpinSystem (i.e. the index i refers to such a State object).

If quantum yields are requested instead, there are two posibilities; by default the yields are just
calculated for each State object defined in the SpinSystem:

Φi =

∫ TotalTime

0

Tr(Piρ(t)) dt . (4)

Note that the upper integration limit is TotalTime rather than∞, and that no rate constant is involved
here; thus this is not a “proper yield”. The other possibility is when the TransitionYields parameter is
true:

Φj = kj

∫ TotalTime

0

Tr(Pjρ(t)) dt . (5)

Here the index j refers to the SourceState parameter of a transition object (which is also a State object,
and hence Pj is the projection onto that state) and kj the rate of the transition. This is calculated for
each transition object in the SpinSystem.

The numerical integration of the Liouville-von Neuman equation is performed using an asynchro-
nous leapfrog algorithm to obtain the time-evolution of the spin system, and the quantum yields are
calculated using the trapezoidal rule on the time-evolution data.

5.4 Task class: PeriodicHS-TimeEvolution
Brief description

Same method as DynamicHS-TimeEvolution except that periodicity in the time-dependence of the
Hamiltonian is exploited to provide a faster method.

26

Limitations, approximations and comments

• Use this method if you use one or more time-dependent interactions, where all of these time-
dependences are periodic.

• The totaltime parameter should be at least a few periods long in order to get any advantage
from this method.

• Requires more memory than DynamicHS-TimeEvolution.

• The method does not work with trajectories.

• Assumes the Hamiltonian to be piecewise constant for very short time intervals as defined by the
StepsPerPeriod parameter. The accuracy of the results can generally be improved by increasing
this parameter (at the cost of speed and increased memory usage).

• Make sure to use a small enough timestep to avoid significant numerical errors.

• When calculating quantum yields, make sure the totaltime parameter is long enough to let the
SpinSystem decay completely.

Parameters

Parameter Values Default Description
TimeStep <float> 0.01 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
CalculateYields <bool> false Whether to output time-evolution (false) or quantum

yields (true).
TransitionYields <bool> false Whether to calculate quantum yields per transition

(true) or per State defined in the SpinSystem (false).
Quantum yield calculations only.

OutputStride <integer> 1 How often output should be written (time-evolution
output only), i.e. write output every nth numerical in-
tegration timestep, where the parameter n is specified
here.

Steps
StepsPerPeriod

<integer> 50 Splits each period into this number of intervals. The
Hamiltonian is assumed to be constant in each of these
intervals.

Technical details

Same method as DynamicHS-TimeEvolution except that the Hamiltonian is calculated at different
times before the numerical integration procedure is started, and these Hamiltonians are then cached
such that they can be used repeatedly during the numerical integration; i.e. this method gains speed
at the cost of increased memory usage (calculating Hamiltonians is time consuming). The period is
inferred from the interactions in the spin system.

If the StepsPerPeriod parameter is denoted N and the period of the Hamiltonian by T , then the
Hamiltonian is calculated at times nT/N ∀n ∈ {0, 1, ..., N} and is assumed to be constant for the
duration T/N .

27

5.5 Task class: MultiDynamicHS-TimeEvolution
Brief description

Multi-system version of the DynamicHS-TimeEvolution method, i.e. supports transitions between Spin-
Systems.

Limitations, approximations and comments

• This is the most general method to compute time-evolution; it can handle all types of input.

• Use DynamicHS-TimeEvolution instead if you only have a single SpinSystem.

• This method can be used to calculate quantum yields as well: just create an extra spin system
to hold the product states and create Transition objects with these product states as target (if
no interactions are present in this other system the reaction products will just accumulate and
so you get the accumulated quantum yield over time).

• Make sure to use a small enough timestep to avoid significant numerical errors.

• This is a very slow method; use it only when faster methods do not suffice.

• Alternative type name: DynamicHS-MultiSystem.

Parameters

Parameter Values Default Description
TimeStep <float> 0.01 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
OutputStride <integer> 1 How often output should be written (time-evolution

output only), i.e. write output every nth numerical in-
tegration timestep, where the parameter n is specified
here.

Technical details

To be added...

5.6 Task class: StaticSS-TimeEvolution
Brief description

Superoperator space (Liouville space) method that calculates the time-evolution of spin systems with
a time-independent Hamiltonian.

Limitations, approximations and comments

• Superoperator space methods scale much worse with system size than native Hilbert space met-
hods (in terms of both memory and speed).

• Ignores time-dependences: If time-dependences are present, they are evaluated only at time 0.

28

Parameters

Parameter Values Default Description
TimeStep <float> 1.0 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
ReactionOperatorsHaberkorn,

Lindblad
Haberkorn The default reaction operator type to use for this task.

This is ignored for Transition objects where the reaction
operator type is specified.

Technical details

Calculates the propagator in superoperator space (Liouville space):

Û = exp

(
− i
~
Ĥ∆t+ K̂∆t

)
= exp(Â∆t), (6)

where Ĥ is the Hamiltonian superoperator, K̂ is the superoperator representing reactions (either
Haberkorn or Lindblad form), and Â is the total Liouvillian superoperator. The propagator is then
used to calculate the time-evolution:

ρ(t+ ∆t) = Ûρ(t) (7)

The time-evolution output is the expectation value of state projection operators:

pi(t) = Tr(Piρ(t)), (8)

where Pi is the expectation value of state i. This is calculated for each State object defined in the
SpinSystem (i.e. the index i refers to such a State object).

5.7 Task class: PeriodicSS-TimeEvolution
Brief description

Superoperator space (Liouville space) method that calculates the time-evolution of spin systems with
a periodic time-dependence of the Hamiltonian. Very similar to StaticSS-TimeEvolution.

Limitations, approximations and comments

• Use this method if you use one or more time-dependent interactions, where all of these time-
dependences are periodic.

• The totaltime parameter should be at least a few periods long in order to get any advantage
from this method.

• Requires more memory than StaticSS-TimeEvolution, but can handle periodic time-dependences.

• The method does not work with trajectories.

• Assumes the Hamiltonian to be piecewise constant for very short time intervals as defined by the
StepsPerPeriod parameter. The accuracy of the results can generally be improved by increasing
this parameter (at the cost of speed and increased memory usage).

• Superoperator space methods scale much worse with system size than native Hilbert space met-
hods (in terms of both memory and speed).

29

Parameters

Parameter Values Default Description
TimeStep <float> 1.0 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
ReactionOperatorsHaberkorn,

Lindblad
Haberkorn The default reaction operator type to use for this task.

This is ignored for Transition objects where the reaction
operator type is specified.

Steps
StepsPerPeriod

<integer> 50 Splits each period into this number of intervals. The
Hamiltonian is assumed to be constant in each of these
intervals.

Technical details

Same propagator-based method as StaticSS-TimeEvolution, except that multiple propagators are
calculated: A full period T of the periodic Hamiltonian is divided into N intervals (given by the
StepsPerPeriod parameter), each of length T/N , and a propagator is calculated for each interval:

Û(nT/N) = exp

([
− i
~
Ĥ(nT/N) + K̂

]
∆t

)
∀n ∈ {0, 1, ..., N}, (9)

These propagators are then used repeatedly to propagate the state of the spin system.
Note that N propagators are calculated and stored in memory, in contrast to a single propagator for

the StaticSS-TimeEvolution method. This results in a significantly poorer performance than StaticSS-
TimeEvolution.

5.8 Task class: MultiStaticSS-TimeEvolution
Brief description

Superoperator space (Liouville space) method. Multi-system version of StaticSS-TimeEvolution, i.e.
supports transitions between SpinSystems.

Limitations, approximations and comments

• Use a different method if you only have a single spin system.

• Both source and target state of Transition objects must be completely described (i.e. use state
objects where the state of every spin is specified). Note that this limitation is not present in the
MultiDynamicHS-TimeEvolution method.

• The ReactionOperator parameter only affects the used decay operator, not the creation operator
(see technical details).

• This method can be used to calculate quantum yields as well: just create an extra spin system
to hold the product states and create Transition objects with these product states as target (if
no interactions are present in this other system the reaction products will just accumulate and
so you get the accumulated quantum yield over time).

• Superoperator space methods scale much worse with system size than native Hilbert space met-
hods (in terms of both memory and speed).

• Alternative type name: StaticSS-MultiSystem.

30

Parameters

Parameter Values Default Description
TimeStep <float> 1.0 Numerical integration timestep (in ns).
TotalTime <float> 10000 Total integration time (in ns).
ReactionOperatorsHaberkorn,

Lindblad
Haberkorn The default reaction operator type to use for this task.

This is ignored for Transition objects where the reaction
operator type is specified.

Technical details

To be added...

5.9 Task class: StaticSS
Brief description

Superoperator space (Liouville space) method that calculates the quantum yield. This is the most
general quantum yield calculation method to use when there are no time-dependent interactions or
time-dependent rate constants, since time-dependences are not taken into account.

Limitations, approximations and comments

• Superoperator space methods scale much worse with system size than native Hilbert space met-
hods (in terms of both memory and speed).

• Ignores time-dependences: If time-dependences are present, they are evaluated only at time 0.

• Alternative type name: StaticIVP.

Parameters

Parameter Values Default Description
TransitionYields <bool> false Whether to calculate quantum yields per transition

(true) or per State defined in the SpinSystem (false).
ReactionOperatorsHaberkorn,

Lindblad
Haberkorn The default reaction operator type to use for this task.

This is ignored for Transition objects where the reaction
operator type is specified.

Technical details

Solves the Liouville-von Neumann equation for the density operator ρ, in superoperator space (Liouville
space):

dρ

dt
= − i

~
Ĥρ+ K̂ρ = Âρ, (10)

where Ĥ is the Hamiltonian superoperator, K̂ is the superoperator representing reactions (either
Haberkorn or Lindblad form), and Â is the total Liouvillian superoperator.

31

There are two posibilities for calculation of the quantum yields; by default the yields are just
calculated for each State object defined in the SpinSystem:

Φi =

∫ ∞
0

Tr(Piρ(t)) dt = Tr(PiÂ
−1ρ(0)) . (11)

Note that there is no rate constant is involved here; thus this is not a “proper yield”. The other
possibility is when the TransitionYields parameter is true:

Φj = kj

∫ ∞
0

Tr(Pjρ(t)) dt = kj Tr(PjÂ
−1ρ(0)) . (12)

Here the index j refers to the SourceState parameter of a transition object (which is also a State object,
and hence Pj is the projection onto that state) and kj the rate of the transition. This is calculated for
each transition object in the SpinSystem.

Here it is used that: ∫ ∞
0

ρ(t) dt = −Â−1ρ(0), (13)

as can be derived using the properties of the Laplace transformation.

5.10 Task class: StaticHS-SymmetricDecay

Brief description
Efficient quantum yield method relying on some assumptions.

Limitations, approximations and comments

• The interactions should be time-independent (otherwise they are just evaluated at time 0).

• Only a single spin-independent reaction is present (i.e. “symmetric decay” as all states decay with
same rate).

• Only the task class RP-SymmetricUncoupled is faster and more efficient than this method.

• Alternative type name: StaticHS.

Parameters

Parameter Values Default Description
DecayRate
ReactionRate
RateConstant

<float> 0.001 The spin-independent rate constant to use (in ns−1). If
the rate constant is not specified, the rate of the first
defined Transition object in each spin system is used. If
no Transition objects are defined in a spin system, the
default value will be used.

Technical details

Calculates the quantum yield by solving the equation:

Φi =
∑
n,m

〈n|Pi|m〉〈m|ρ(0)|n〉 k2

k2 + (ωn − ωm)2
, (14)

where ρ(0) is the initial state density operator, ωn is an eigenvalue of the Hamiltonian (upto a factor
of ~), |n〉 and |m〉 eigenstates of the Hamiltonian, k is the spin-independent rate constant, and Pi is
the projection operator onto state i. Quantum yields Φi are calculated for all State objects defined in
the spin system.

32

5.11 Task class: RP-SymmetricUncoupled

Brief description
Very efficient quantum yield method subject to rather strict limitations.

Limitations, approximations and comments

• Works only for radical pairs.

• The interactions should be time-independent (otherwise they are just evaluated at time 0).

• Only a single spin-independent reaction is present (i.e. “symmetric decay” as all states decay with
same rate).

• The two radical should be uncoupled (i.e. no double-spin interaction such as the exchange or
magnetic dipole-dipole interaction between the two unpaired electrons).

• Which spins belong to each radical is inferred based on the “type” parameter of the spins: only
two spins should be given the type “electron” (one per radical).

• This method calculates only the singlet quantum yield for the radical pair, and the triplet yield
is then inferred as these two yields should add up to 1.

• Alternative type name: RP-Uncoupled.

Parameters

Parameter Values Default Description
Tolerance <float> 1e-10 Quantum yield contributions smaller than this toleran-

ce level are neglected.
DecayRate
ReactionRate
RateConstant

<float> 0.001 The spin-independent rate constant to use (in ns−1). If
the rate constant is not specified, the rate of the first
defined Transition object in each spin system is used. If
no Transition objects are defined in a spin system, the
default value will be used.

Technical details

The two radicals are treated independently and with their own single-radical spin Hamiltonians. The
first radical is referred to as radical A, and the other radical as B. The method calculates the quantum
yield by solving the equation:

Φi =
1

4
+N

∑
p,q

∑
i 6=j

∑
g 6=h

RA
pqR

B
pq

k2

k2 + (ωA
i − ωA

j + ωB
g − ωB

h)2
, (15)

where ωm
i is an eigenvalue of the single-radical Hamiltonian for radical m (upto a factor of ~), k is the

spin-independent rate constant, and Rm
pq is defined by:

Rm
pq =

∑
i,j

Tr (Sm,p |i〉〈i|Sm,q |j〉〈j|) , (16)

where |i〉 are the eigenstates of the spin Hamiltonian for radical m, and Sm,p are the spin operators
for the unpaired electronic spin of radical m with p ∈ {x, y, z}.

33

5.12 Task class: Gamma-Compute
Brief description

Implementation of the γ-COMPUTE algorithm. Similar to PeriodicHS-TimeEvolution except that an
average of the phase of the periodic Hamiltonian is also performed, and this method only calculates
quantum yields.

Limitations, approximations and comments

• Work-in-progress...

Parameters

Parameter Values Default Description
Steps <integer> 100 Splits each period into this number of intervals. The

Hamiltonian is assumed to be constant in each of these
intervals..

TotalTime
Period

<float> 10000 Total integration time (in ns).

Technical details

To be added...

5.13 Task class: HamiltonianEigenvalues
Brief description

Calculates eigenvalues of the spin Hamiltonian. Can also calculate resonance frequencies and other
properties of the Hamiltonian (see parameters).

Limitations, approximations and comments

• The resonance frequency analysis is a secondary result and is therefore printed in the logfile
rather than the datafile.

• Alternative type name: Eigenvalues.

Parameters

34

Parameter Values Default Description
Superspace
UseSuperspace

<bool> false Whether to use the superspace Hamiltonian rather than
the native Hilbert space (“normal”) Hamiltonian for all
calculations.

Eigenvectors
PrintEigenvectors

<bool> false Whether eigenvectors should be printed.

Hamiltonian
PrintHamiltonian

<bool> false Whether the Hamiltonian should be printed.

SeparateReal
SeparateImaginary
SeparateComplex

<bool> false Whether output should be written as complex numbers
(false) or as separated real and imaginary parts (true).

ResonanceFrequencies
Frequencies
Resonances

<bool> false Whether to perform a resonance frequency calculation.

SpinList <Spin list> empty A comma-separated list of spins. Transition matrix ele-
ments will be calculated for these spins if a resonance
frequency analysis is performed.

InitialTime
StartTime
Begin

<float> 0 The initial time (in ns) used for all calculations.

TotalTime
StopTime
End

<float> 0 If this is larger than the initial time, all calculations will
be performed at times from initial to total time (in ns),
as defined by the timestep parameter.

Timestep <float> 1 Timestep (in ns) to use if a totaltime larger than initi-
altime is specified.

ReferenceStates
RefStates

<State
list>

empty Comma-separated list of states. The projection of each
eigenstate onto these states is calculated.

Technical details

The eigenvalues and eigenstates are calculated by diagonalization of the Hamiltonian at a given time
(time 0 by default, but the calculations can be done for different times using the initialtime, totaltime
and timestep parameters).

Resonance frequencies are calculated as the difference between pairs of eigenvalues, and are calcu-
lated for each pair of eigenvalues. If a spinlist is specified, the following transition matrix elements are
also calculated for each specified spin:

Ti,x = 〈vp|Si,x|vq〉, Ti,y = 〈vp|Si,y|vq〉, Ti,z = 〈vp|Si,z|vq〉, (17)

where i is the spin index from the spinlist, |vp〉 and |vq〉 are eigenstates of the Hamiltonian, Si,r, r ∈
{x, y, z} are the spin operators, and Ti,r, r ∈ {x, y, z} are the transition matrix elements.

The reference states, if specified, provide the projections of eigenstate onto these references, i.e.:

Ri,p = 〈vp|Pi|vp〉, (18)

where Ri,p is the projection of the pth eigenstate onto reference state i, with corresponding state
projection operator Pi and eigenstate |vp〉. This is calculated for all eigenstates.

35

6 Preprocessor directives
Similar to the C programming language, the MolSpin input format allows the use of a variety of
preprocessor directives. Such directives are prefixed with the symbol #, but the directives are slightly
more restricted than in C since they cannot be invoked inside the definition of objects (e.g. Spin or
Transition objects), and the include directive cannot be used within an object group either (spinsystem,
settings or run section). The main reason for this limitation is that the directives are read “on the fly”
while parsing the input files, rather than an actual preprocessing (although the “preprocessor directive”
term was adopted for its similarity with C).

6.1 #include <filename>
The include directive can be used to split your input into multiple files. You can, for example, define
your spin system in one file, and use it for different purposes by defining settings and run sections in
other files including your spin system file.

Note that MolSpin keeps track of the files that are included, such that repeated or recursive inclusion
of the same files is prevented.

6.2 #define <name> <value (optional)>
If used without a value, the define directive can only be used by other directives such as ifdef or
ifndef. This way it is possible to e.g. create so-called guards6 or to easily switch several lines on/off by
commenting in/out a define directive.

If a value was also supplied, any occurrence of the defined name in any object will be replaced by
the value. Note the limitation here: Only the contents of objects7 can be replaced by the defined value.
If you need to use spaces in either the name or value of your definition you can write them as strings,
i.e. between quotes (”this is a string”), but remember that strings are always treated as case sensitive
in MolSpin!

6.3 #undef <name>
Removes a definition (regardless of whether the definition had an associated value). The definition is
valid from the point in the input file where the define directive is made and until the undef directive.

6.4 #ifdef <name>
Short for “if defined”. This directive does nothing if the specified name was defined previously by a
define directive, but if the specified name was not defined previously (or if the definition was removed
previously by undef), all the subsequent contents of the input file is ignored until an endif or else
directive is encountered.

Should always have a corresponding endif directive.

6.5 #ifndef <name>
Short for ”if not defined”. Same as the ifdef directive except that the following contents are instead
ignored if the specified name was defined previously. Thus this is the logical negation of the ifdef
directive (i.e. opposite behaviour).

Should always have a corresponding endif directive.
6Guards is a standard technique in C or C++ programming to prevent inclusion of the same file twice by putting

all the code between ifndef and endif, where the first line after ifndef makes the define directive that was just checked.
This is used in all the header (.h) files of the MolSpin source code.

7Objects refer to Spins, Interactions, Transitions, etc. but not object groups (SpinSystems, Settings and Run Section),
and the define directives are only valid for their contents, i.e. everything between { and }. Thus a define directive has
no effect on e.g. the name of a Spin object.

36

6.6 #else
This directive can be used in between an ifdef or ifndef directive and its corresponding endif directive.
Either the input between ifdef /ifndef and else or between else and endif will be ignored, i.e. the
else directive “switches” between ignoring and not ignoring the lines between ifdef /ifndef and its
corresponding endif.

6.7 #endif
Denotes the end of an ifdef or ifndef directive.

37

